
J-OCM is a system for monitoring
distributed Java applications
conforming to OMIS specification
with J-OMIS extensions.

It is used to:

• gather information on distributed
application

• transfer instrumented classes to
their target locations

• redefine classes in remote JVMs

• return results from instruments

Włodzimierz Funika, Paweł Świerszcz
Institute of Computer Science AGH, Mickiewicza 30, 30-059 Kraków, Poland

Dynamic Instrumentation
Instrumentation is a process in which existing program's
code is enriched with additional functionality by injecting
instructions implementing some new features, mainly
intended for monitoring.

Goals of project
The main goal of this project is to present a proposal of a system that
will support the developer in instrumenting Java applications. This
support consists of automating some of the tasks that are required
steps of instrumentation process. In this way the developer can
concentrate on a higher abstraction level – designing instrumentation
elements, choosing instrumentation spots, combining the created
additional functionality with existing application classes in order to
create a functional execution unit.

Use cases

Persistence

Safe fail-over

Load balancingOptimization

Testing

Logging

Debugging

Monitoring

Distributed Distributed
EnvironmentEnvironment

JVMJVM JVMJVM JVMJVM

Instrumentation Instrumentation

EngineEngine

Java classesJava classes

Usage scenario
• The instrumentation environment
is prepared (classes to be
instrumented, instruments’
definitions)
• Instrumented classes are loaded
and examined, a SIR tree is created
for instrumented application
• Instrumentation design is
prepared (instruments connected to
classes)
• Classes are modified, instruments
injected into methods
• J-OCM system initialized,
application tokens obtained
• Classes redefined on remote
nodes with J-OCM
• Instruments now active and
working transparently, possibly
returning results via J-OCM event
services

• Define hook points in the application
where an instrument can be applied
• Code to be executed when execution flow
reaches hook point
• Methods and fields required by the
instrument to work properly
• Instrument parameters

• Used to perform low-level
operations like XML processing
(Castor) or bytecode introspection
and modification (Java Object
Instrumentation Engine,
Bytecode Engineering Library)

InstrumentsInstruments

DefinitionsDefinitions

LowLow--levellevel

LibrariesLibraries

JJ--OCMOCM

Source code
(.java)

Compilation Instrumentation

After being instrumented classes are indistinguishable from those not instrumented.

Bytecode
(.class)

Bytecode
(.class)

SIR
SIR (Standard Intermediate Representation)
specifies an uniform way of representing an
application’s code structure. It consists of a
tree hierarchy with a SIR root element for
whole application and it’s nested subelements
describing code details (classes, methods,
fields, etc. In case of Java). It is generic and
allows for representing applications in many
languages, in an extendable way and can
easily be transformed into XML.

<sir>

<language>java</language>

<group name="tests" type="package">

<group name="tests/TestApp” type="class">

<variable name="staticString" isField="true„
type="java/lang/String;" parameterIndex="-1">

<unit name="logStack" arguments=""/>

</group>

</sir>

SIR

Group

Unit

Unit

Group

Unit

Dependency Dependency
librarieslibraries

Bytecode modifications
The nstrumentation system works entirely on binary classes. This means that for each instrument injection point,
bytecode instructions specific for that hook have to be located. Then a special bytecode section is prepared taking into
consideration a code location, hook point context and instrument parameters. This section is then inserted into methods
code so it passes execution flow to instrument along with all data needed (like the current method’s name or variable
value, depending on the particular instrument). This has to be performed very carefully not to violate class correctness
or application stability.

Original application’s behaviour is not altered. Dynamic
instrumentation means that running systems are be
enhanced on-the-fly without stopping and restarting.

