
Grzegorz Wianecki, Mateusz Wójcik, Włodzimierz Funika, Marcin Smętek
1Institute of Computer Science AGH, Mickiewicza 30, 30-059 Kraków, Poland

2Academic Computer Centre CYFRONET, Nawojki 11, 30-950 Kraków, Poland
email1@cyf-kr.edu.pl, email2@cyf-kr.edu.pl

1 .Introduction

When designing distributed systems there are additional
elements that need to be taken into consideration compared
to sequential systems:
• communication
• synchronization
• load-balancing

2. Goals

The monitoring of distributed systems needs to focus on the
mentioned aspects and allow to correlate data and events to
form a complete picture of the application. The RMI extension
to J-OCM was designed to monitor both RMI-based application
and the internal RMI mechanisms with emphasis on Activation.

3. RMI Extension to J-OCM architecture

4. Implementation concept

The approach used in the RMI extension to J-OCM relies on
Java classes instrumentation. Several RMI and Activation
classes were modified to notify the RMIProf class, which in turn
passes the events via JNI to the JOCM agent running within the
Virtual Machine.

The following RMI classes were modified:

• sun.rmi.registry.RegistryImpl

• sun.rmi.server.ActivatableRef

• sun.rmi.server.Activation

• sun.rmi.server.LoaderHandler

• sun.rmi.server.DGCImpl

6. Activation mechanism

Activation is the process of delaying object initialization until
it is used for the first time. It also allows to free the object’s
resources when it is not used while storing its persistent state.

The following entities are involved in Activation operations:

5. Entities identification

Both RMI application and RMI system itself run on several
Virtual Machines. The RMI and Activation entities are accessed
from different Virtual Machines and need to be consistently
identified in the system.

The identification mechanism used in the extension is based on
hashcode field of each Java object. RMI specification states that
remote references to RMI and Activation objects that point to
the same object have the same hashcode number. This allows
the entities to be identified from different Virtual Machines.

9. References

[1] Marcin Smetek, "OMIS-based Monitoring System for Distributed
Java Applications", M.Sc. thesis, AGH, Krakow, 2003

[2] Grzegorz Duda, "Monitoring RMI calls in Java applications",
M. Sc. thesis, AGH, Krakow, 2003

[3] The Java Virtual Machine Specification, Sun Microsystems.

[4] http://java.sun.com/docs/books/vmspec/

7. Activation flow

The following diagram presents the activation execution flow:

8. Execution procedure

Java Virtual Machine needs to be instructed to load the modified
classes and the J-OCM agent to work with the monitoring system.
As the application and RMI systems (rmiregistry and rmid – RMI
activation daemon) run in different Virtual Machines need to have
J-OCM support enabled. In addition as rmid spawns Virtual Machine
for each ActivationGroup created, J-OCM needs to be enabled also
for these ones.

rmiregistry –J-Xdebug –J-XrunAgent –J-Xbootclasspath/p:$INSTRUMENTED_CLASS_DIR

rmid –J-Xdebug –J-XrunAgent –J-Xbootclasspath/p:$INSTRUMENTED_CLASS_DIR

–C-Xdebug –C-XrunAgent –C-Xbootclasspath/p:$INSTRUMENTED_CLASS_DIR

java –Xdebug -XrunAgent –Xbootclasspath/p:$INSTRUMENTED_CLASS_DIR MainClass

Node distribution unit

RMI
Instrumented
RMI classes

RMIProfmethod
call

AgentJVMPI/JVMTI

JNI

Local monitorLocal monitor

Profiler Debugger
J V M

JNI

